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Abstract—In this work we present the use of two dual for-
mulations to compute Extremely Low frequency (ELF) induced
fields into the human body. This allows to estimate the numerical
error, as well as rigorously bound the (global) co-energy. This
method is here applied to the classical case of the exposure to a
homogeneous magnetic field.

I. INTRODUCTION

Numerical dosimetry of Extremely Low Frequency (ELF)
fields induced in the human body is important in order to
better tune and/or understand the action of recent medical
devices which make use of electrical energy [1], and for
limiting human exposure to electromagnetic fields [2]. Due
to the difficulty of obtaining quality meshes from segmented
images, most computations are performed by means of Finite
Difference (FD) methods [3] as they are straightforwardly
applied to “hexaedric” meshes. Despite the effort of the
scientific community, a convincing validation of numerical
simulation is still lacking [4]. This is particularly annoying
due to the extreme complexity of the human body, and to the
uncertainties on dielectric properties of tissues [5]. Therefore
it is crucial to reduce as much as possible the numerical errors.

II. FORMULATIONS FOR NUMERICAL DOSIMETRY

In the quasi-static approximation, Maxwell’s equations for
a magnetodynamic problem can be simplified as:

curl e = −∂tb , curl h = j , div b = 0 , (1 a, b, c)
j = σe , b = µh , (1 d, e)

with e the electric field, h the magnetic field, j the electric
current density, b the magnetic flux density, σ the electrical
conductivity and µ the magnetic permeability. Displacement
currents and the reaction field are neglected [6]: this allows to
reduce the computational domain Ω to the human body, on the
boundary of which the following condition has to be imposed:

n · j|∂Ω = 0 (2)

Furthermore, as the reaction field is disregarded, one reckons
that indeed equations (1a) – (1e) have the mathematical
structure of a static problem.

At the continuous level, these fields are welcome into the
structure represented in the following Tonti’s diagram:

ϕ
grad−→ e,a

curl−→ b
div−→ 0

σ ↕ µ ↕
0

div←− j
curl←− h, t

(3)
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At the discrete level this structure is approximated by appro-
priate mixed Finite Elements (FE). Two dual formulations are
obtained by strongly imposing the constitutive laws and the
equation on one of the two levels of Tonti’s diagram, whereas
the equation on the other level is weakly imposed [7].

A. The e–conform ϕ− a formulation

Let a be a known magnetic vector potential such that:
curl a = b. By enforcing in a strong sens the upper level
of (3), i.e. Faraday’s law (1a) one obtains that: e = −∂ta −
grad ϕ, where ϕ is an unknown electric scalar potential. The
weak form of Ampère’s law (1b) reads [6]:

(σ(∂ta+ grad ϕ), grad ϕ′) = 0 ∀ϕ′ ∈ H(grad,Ω), (4)

where (·, ·) denotes a volume integral in Ω of the product of
vector fields.

B. The j–conform t− b formulation

Analogously, we can strongly enforce the lower level of (3),
i.e. the divergence of Ampère’s law (1b), div j = 0. Let t be
an unknown electric vector potential such that: curl t = j.
The weak form of Faraday’s law (1a) is given by [8]:

(
1

σ
curl t, curl t′)+(∂tb, t

′) = 0 ∀t′ ∈ H0(curl,Ω). (5)

However, this formulation gives rise to a linear system which
is difficult to solve when the imposed flux density b is not
exactly solenoidal. It has been shown [9] that this problem can
be solved by projecting b on the kernel of the div operator
H(div 0,Ω). That is, a vector potential a such that b = curl a
is computed and (6) becomes:

(
1

σ
curl t, curl t′) + (∂ta, curl t

′) = 0 ∀t′ ∈ H0(curl,Ω)

(6)

III. ERROR ESTIMATE AND CO-ENERGY BOUND

Considering the dual electromagnetic formulations together
allows, on the one hand, to calculate a more precise solution
as the average of the dual solutions:

e =
1

2

(
e1 +

1

σ
j2

)
=

1

2

(
−∂ta− grad ϕ+

1

σ
curl t

)
,

(7)
where e1 and j2 are computed respectively with the ϕ−a and
t−b conform formulation. On the other hand, the difference:
∆e = ||e1 − 1

σ j2|| is an estimate of the numerical error.
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A rigorous bound can be found for the coenergy EC , defined
at the continuous level:

EC =

∫
Ω

∫ e

0

j de (8)

At the discrete level, by applying div j2 = 0 strongly, dual
coenergies can be computed:

EC1 =

∫
Ω

∫ e1

0

j de =
1

2
(σe1, e1) (9)

EC2 =

∫
Ω

e1 · j2 −
∫
Ω

∫ j2

0

edj =

1

2
(−∂ta, j2)−

1

2

( 1

σ
j2, j2

)
(10)

By extending a result from static formulations [10] and assum-
ing that a is exact, one obtains an upper and a lower bound
for the real coenergy:

EC1 ≥ EC ≥ EC2 . (11)

In particular, the equality holds if and only if the constitutive
law: j2 = σe1 is exactly fulfilled.

TABLE I
DISCRETE COENERGIES FOR AN ELLIPSOID (µV/m)

Nb of nodes EC
1 EC

2 EC
1 − EC

2
250 20.1750 18.4617 1.7133

3·103 20.1197 19.7165 0.4032
10·103 20.1047 19.9801 0.1246
75·103 20.0937 20.0771 0.0166

IV. EXPOSURE TO A HOMOGENEOUS FIELD

We simulated the exposure of an homogeneous ellipsoid
to a vertical homogeneous 500 µT flux density at 50 Hz.
The bound (11) has been tested with progressively refined
meshes. The values shown in table I confirm the result.

In order to test the dual formulations with a more realistic
model, we considered (under the same exposure conditions)
a heterogeneous computational phantom (Fig. 1) based on
the Visible Human Project (VHP). The computation has been
repeated with a refined model, obtained by splitting each
tetrahedral element. The induced electric field computed with
the original and refined mesh along a horizontal line at the
level of the chest is depicted in Fig. 2. One observes that the
error estimates decrease when the mesh is refined. Moreover,
the values computed with the refined mesh are nearly always
well inside the error bars computed with the original unrefined
mesh.

V. CONCLUSION

The effectiveness of using dual formulations for improving
the accuracy of the computation and to estimate the numerical
error is demonstrated. On-going works aims at implementing
adaptive strategies. In the full paper we will present the
application of this method to the study of fields induced by a
real device (by using the measured field as source term), as
well as the proof of (11).

Fig. 1. Electric field on the surface of the phantom from the VHP.

Fig. 2. Electric field computed at the level of the chest.
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